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CURRENT-LIMITING CAPABILITY AND 

ENERGY DISSIPATION OF HIGH-VOLTAGE FUSES 

L. Vermij and H.C.W. Gundlach 

INTRODUCTION Important characteristics of a fuse are amongst 
°the r s; 
" the nominal current 
' the energy dissipation under nominal conditions 
“ the cur rent-limiting capability (cut-off characteristic). 
These basic characteristics are determined partly by the same para- 
meters, such as e.g. the cross -section and the length of the fuse-element, 
Physical parameters of the material of which the fuse -element is 
composed, the mechanism of the heat transfer from the fuse -element to 
its surroundings, the maximum permissable temperatures, etc. That 
means that the above mentioned basic characteristics are not independant 
from each other. The aim of this paper is to show the relationship 
existing between the energy dissipation under nominal conditions Pn on 
the one hand and the nominal current 1^ and current limiting capability or 
cut-off current Ic on the other hand. 
Two situations will be studied, viz. 

fuse-elements consisting of a long, homogeneous conductor of constant 
cross -section (long fuse-element). 
Iu this case the heat generated in the fuse-element under steady-state 
conditions will be transported to its surroundings mainly in radial 
direction. 
Fuse-elements consisting of a number of short fuse-elements connected 
m series. In this case the heat generated in each short fuse -element is 
mainly transported (by metallic conduction) to the ends (heat sinks) of 
each short fuse-element. 

It is believed that the majority of practical designs may be considered to 
e hounded by these two situations. 

■31HSORETICAL CONSIDERATIONS The energy-balance of a current- 
carrying fuse-wire under steady-state conditions, that means if &T/^ t =0, 
ls given by: 

d2T 

dx2 
+ J/3

0( I+/9T)-GT = (2.1) 

^here T(x) is the temperature at a place x (see Fig. 1), J is the current 
gnsity [Am"2] , \ is the heat conductivity of the wire-material r J .  w      _    

i-fl" nV*‘K~* 5» P o *s the specific resistance at ambient temperature I *mj, /G is the temperature coefficient of the specific resistance f K” J 
G is the total heat flux per unit length and per degC in radial 

^irection to the surroundings of the conductor (fw.m_^.K~^J • Tb 
G can be determined experimentally for a given case [l] 

of 
The value 
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Eq. (2. 1) is valid for a conductor with length L = 2 2 connected to two 
metal blocks (see Fig. 1) having a heat capacity which is large compared 
with the heat capacity of the conductor. 
Introducing the boundary conditions - = 0 at x = 0 and T = 0 at 
x = + L, it can be derived that 

TM = ! 

COS X L/A 

cos £ y a/A 
- 1 

1 
(2.2) 

where a = /3 P Q - G ^ 0 

b = J P 0 
In the case of short fuse-elements, where the heat transfer from the fuse' 
element is mainly determined by heat conduction to the ends of the fuse- 
element, it can be shown that Jf3 G [l]. Further, the maximuh1 

temperature T will exist at x = 0. So, in this case of short fuse- 
elements we obtain: 

m 
1 

P> [ cos « 

where 

(2.3) 

* = J v¥ 
In the case of long current-carrying conductors, the maximum tempera 
Tm is not influenced by axial heat transfer to the ends of the conductor 
So then we have 

ture 

m 
b 
a 

JV 

G - J/W, 

(2.4) 

Introducing the melting temperature Tg and assuming Tm=T , the 
equations (2.3) and (2.4) give an expression for the minimum fusing 
current density Js for short and long fuse-wires respectively. Frol# 
eq. (2.3) it can be seen that Jg depends also on the length L = 2 / of &e 

fuse-element. This dependency is shown graphically in Fig. 2 for the 
metals Ag, A1 and Pb. From eq. (2.3) and (2.4) also the ratio 
q = Tj^/Tg can be computed as a function of the ratio p = j/j . 
The results are given in Fig. 3 for short and long fuse-wires respectively 

The energy dP generated in a small part dx of a fuse-element with 
cross-section A can be written as 

dP =J2/9
0[l + p T(X) ] A . dx 

Introducing eq. (2.2), assuming ß p Q>^ G and integrating over the 
entire length L = 2-c , one can derive for the total energy P generated 
in a short fuse-element: 

P=2 PA ■A-J-A(lt/5lm)s‘“‘<' <2-5) 

For the current I holds : I = J. A. . Further, Tm = qTg (q C 1) can be 
introduced. If nominal current conditions are considered, for which 
I = 1^, of = of q = q^ and P = P^ are valid, we get 



157 

P = 2 
n V- z^/'o V/’o (1 +C1n/JTs) Sin n (2.6) 

The value of qn belongs to a value p = pn = J_/Jg < 1. These values of 

^n and p can be derived from Fig. 3a for different metals. 
From eq. (2.3) it is clear that cosa/ and consequently also since/ depends 
^ly on /3 and Tm. So under nominal current conditions, where 

= T^Tg, the factor sin n/ is a constant. That means that Pn 
according to eq.(2.6) seems to be independant of the length of the fuse- 
edernent, but depends only on qn (or p ), and on the physical parameters 
.and Ts. This conclusion, which Ras been confirmed by experiments, 
ls valid as long as the radial heat transfer from the fuse-wire may be 
neglected, as is the case for short fuse-elements. 

The energy dissipation of a long current-carrying conductor, for which 
is assumed that its temperature T equals Tm over its entire length 

(this leads to a conservative estimate), can be written as 

P. = 4 r 0<1+/9 TJ A-L 

where L is the total length of the conductor. 
Substituting In = AJ and Tm = qnTg and introducing eq.(2.4) for J=J , 
we obtain 

Pn = L V qnTsG /> 0 (1 + qn fi TJ 
(2.7) 

^ this case the energy dissipation P does depend on the length of the 
conductor L, as would be expected.11 

Under short-circuit conditions the behaviour of a fuse-element can be 
airly well described with Meyer's relation 

/ J2dt = C. . 
M 

where tg is the melting time and represents Meyer's constant 
hich is determined by physical constants of the material of the fuse- 

e cment. Defining the action integral 

/S 2 
K

M = j i dt (2.8) 

0 

^here i is the instanteneous value of the current flowing through the 
Use-element, it follows with i = AJ: 

KM = A2CM 
(2.8a) 

Th e cut-off current I can be computed from the above equations by 
c
QrnPUting the value of i at t = t . The value of the minimum fusing 

j rrent I and, at a given A, also the value of Jg depends on the 
jf^th of the fuse-element, as demonstrated with Fig. 2. 

°r a short fuse-element Is = AsJg is valid, and for a long fuse- 
eruent Ig ^ = A £ Jgoo , and we require Ig = Ig , then it follows that 
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where A^ and Ag are the cross-sections of long and short fuse- 
elements respectively. 
In the foregoing it is shown that, keeping Ig constant, the cross-section 
can be reduced if the length of the short fuse-element is reduced. 
Reducing the cross-section means, however, a reduction of 
according to eq. (2.8a) and, consequently, a reduction of Ip. 
So, also the ratio Ic/ls or Ic/ln 

can be reduced by reducing the length 
of a short fuse-element. 

With the help of the above theoretical considerations it is possible to 
find a relation between the energy-dissipation Pn , the cut-off current 
Ic and the nominal current ^ of a fuse under a variety of conditions. 
This will be the subject of the next section. 

COMPUTATIONAL RESULTS AND CONCLUSIONS The above 
mentioned relationship between P , Ic and In has been computed for 
long fuse-wires and, neglecting the energy transfer in radial direction, 
for short fuse-wires. 

Assuming a certain cross-section A which is constant over the entire 
length of the fuse-wire, it is possible to compute the nominal current In 
of long fuse-elements from eq. (2.4) for a given metal, after introducing 
values for qn = Tni/Ts and G . With the same parameters the energy 
dissipation per unit length Pn/L can be computed from eq.(2.7), as 
as the value of the action integral Kj, according to eq. (2.8). If the 
current i in eq.^(2.8) is assumed to he a symmetrical sine-wave curreO 
with peak value I, a value of I can be found with the chosen parameter 
Fig. 4 and 5 show results of such computations for long silver wires and 
long sodium wires respectively. Experimental evidence suggests that 
for G a value of 2 x 10&W. m'^.K'I has to be taken, which value has 
been introduced in our computations. Further, for silver wires qn=0- 
(T =192 degC) has been introduced, which seems to be a practical value 

For sodium wires we introduced qn = 0.9 (Tm = 88 degC). 
As an example: Fig. 4 shows that a long silver fuse wire with I =200A> 
subjected to symmetrical (50Hz) short-circuit currents with peak values 
I = 20kA and 40kA will cut the current at values Ic = 18kA and 24kA 
respectively, providing the arc-voltage is sufficiently high. The energY 
dissipation in this fuse wire at I = 1^ will be approximately 9.5Watts/c 

Fig. 5 shows that under equal circumstances a long sodium wire with 
In = 200A will cut the current at Ic = lOkA and 12kA respectively. 
In this sodium wire the energy dissipation at I = I amounts to appr. 
8.6 Watts/cm. This example demonstrates that long sodium wires sh° 
a remarkable reduction of Ic compared with silver wires, whereas the 
eneregy dissipation is almost equal in both cases. If in the case of a 
long silver wire the value of G can be made three times larger than 
assumed earlier, and if we assume qn = 0.6 (Tm= 576 degC), then the 
cut-off current will be almost equal to that of the long sodium wire unoe 

the above mentioned conditions. However, the energy dissipation of the 
long silver wire at 1 = 1^ will now amount to 30 Watts/cm. 
A dramatical reduction of Ic , compared with long fuse-elements, can 
obtained by applying short fuse-elements, as can be seen from a 
comparison of Fig. 4 and 5 with Fig. 6 and 7. The latter figures have^.{ 
been computed for short fuse-wires which are subjected to a short-circ 

current with a peak value of 20kA. Fig. 6 shows for example that shor 
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silver fuse-elements with L = 2mm and L = 1 Omm cut the current at 
values Ic = 2kA and Ic = 6kA respectively, if 1 = 20kA. Further Fig. 6 
uud 7 show that at In = 200A the energy dissipation amounts to 28 Watts 
Per element for silver and 17 Watts per element for sodium, irrespective 
°f the length of the fuse-element. For comparison, figures 6 and 7 show 
Ic as a function of Pn/L, and 1^ for long fuse-elements (L —>oo). 
It turns out that the energy dissipation of short fuse-elements is in 
general larger than Pn at I = 1^ of long fuse-elements per equal length. 

As a conclusion one can state that the total energy dissipation at I = In 

°i a chain of short fuse-elements in series is determined by the number 
°f short fuse-elements and not by the total length of these short fuse- 
elements. This energy dissipation is larger and can be much larger 
than the energy dissipation of a long fuse wire with equal total length. 
In general, a fuse requires a minimum length of the fuse-element in 
°rder to be able to generate an arc - voltage which is sufficiently high. 
Also the required dielectric strength (resistance) after interruption of 
the current makes a certain length necessary. So one can state that the 
Nominal voltage for which a fuse is designed requires a certain minimum 
total length of the fuse-element. Once this length is given, the minimum 
energy dissipation at I = ^ will be obtained with a fuse-element which 
consists of a homogeneous conductor of constant cross-section. 
Improving the cur rent-limiting capability by deviding the total required 
ength into a number of short fuse-elements in series, which is especially 
csirable at high values of the nominal current, is only possible at the 

expense of a higher energy dissipation at 1= In. In general one can 
state that the lower the cut-off current is, the higher the energy dissipation 
will be. 
"The value of the energy dissipation, even at high nominal currents, does 

offer serious problems as long as low-voltage fuses are considered, 
clxgh-voltage fuses, however, require much greater lengths of the fuse- 
elements, and this will lead to much larger values of the energy 
^ssipation. If a maximum permissable value for the energy dissipation 

0 high-voltage fuses exists, as will be the case with built-in fuses, only 
fmall nominal currents are possible. In general, it can be stated that it 

hardly possible to built high-voltage fuses with high nominal currents 
1 undreds of amps) and with improved cur rent-limiting capability in 

Accordance with present design methods, which can meet practical 
Acquirements with respect to the energy dissipation under nominal 
current conditions. Improvements can only be made if the arc-voltage 
Per unit length and the dielectric strength per unit length after current- 
mterruption can be increased. In this respect it may be remarked that 
^search work carried out by amongst others Salge[2] and Huhn [3] , 

1 u the aim to gain more insight in the parameters influencing the arc- 
tage, seems to be very important. 
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Cut-off current I of long fuse wires (Ag and Na) as a function of the 
^orninal current In and the heat dissipation per unit length Pn/L. 

eak value of prospective current I is parameter. 
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