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A DECOUPLED METHOD FOR PREDICTING 

TIME-CURRENT CHARACTERISTICS OF HRC FUSES 

P.M.McEwan and R.Wilkins 

PRINCIPAL SYMBOLS 

C 

P 
K 
JC 
0 
a 
T 
J 
M 

t 
v 

As 

M.F.C. 
1 
Ax, Ay, Az 
At 

specific heat 
density 
thermal conductivity 

thermal diffusivity 

electrical conductivity 
temperature coefficient 
temperature 
current density 
modal parameter for finite-difference solutions 
time 

volume of sub-volume of element 
sub-volume surface area 
minimum fusing current 
r.m.s. symmetrical prospective current 
spatial separation between nodes 

time step 

Suffixes and superscripts are used as follows: 

e 
f 
A 
m 
i, j, k 
n 

pertaining to the fuse-element 
pertaining to the filler 
at ambient temperature 
at melting temperature 

spatial identifiers 
time identifier. Thus Ti, j, k is the temperature 
at a point whose coordinates are iAx, jAy, and kAz 
at a time nAt 

INTRODUCTION Calculation of the complete time-current characteristics 
of practical fuses must be done using numerical methods (1), (2). 

These fuses usually contain elements with multiple constrictions in the 
form of notches. Finite difference methods have been found most suitable. 

For each value of prospective current the temperature distribution within 
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the fuselink is computed as a function of time until melting occurs 
at some point on the fuse element. In the regime of the time-current 
characteristic, heat loss from element to filler, and along the 
element to the end connections is significant in determining the 
melting time. 

However, a full 3-dimensional finite difference model of a practical 
fuselink requires a vast number of nodes, since the node spacing is 
fundamentally determined by the need to accurately represent the 

element thickness and the geometry of the reduced element section. 
This means that colossal computer running times are necessary to 
obtain a solution. 

Excessive computer storage and running times may be overcome without 
adverse effect by using a decoupled numerical solution. In this method 
the transient temperature distribution along the element is computed 
by conventional methods, but at each step a separate calculation 
is made of heat lost to the filler from the surface of the element. 
Axial and lateral heat transfer within the filler, and the effect of 
the outer cartridge are neglected. These assumptions become invalid 

for very long melting times (for currents approaching the M.F.C.). 
In this region a quite different, quasi-steady-state representation 

is necessary. 

The decoupled method has been found to give predictions of time-current 

characteristics in good agreement with test results for a wide variety 
of fuselinks. 

FUSE REPRESENTATION The decoupled model is shown in Fig.l. 

The fuse element is divided into subvolumes as shown, thus permitting 
the solution of the transient (2-dimensional) temperature distribution 

within the fuse element by finite-difference methods. Nodes are 
introduced normal to each subvolume to permit calculation of the 

temperature distribution in the filler adjacent to the element. 
The following assumptions are made: 

(i) the outer cartridge and environmental effects play no part 
in the processes. 

(ii) heat conduction in the filler occurs normal to the subvolume 

surfaces, i.e. in the y-direction only. 

(iii) the current distribution within the element remains unchanged 
throughout the transient (1), (4). 

(iv) Kg and do not vary with temperature. 

(v) the fuse end-caps are represented as fixed-temperature boundaries. 

(vi) the thermal capacity of each subvolume of the element is lumped 
at a single node. This is possible because the element thickness 
is very small compared with Ay. 

The conventional time-current characteristic (3) covers the range 
0.01s < tm < «. The decoupled model is valid also over this range, 
except for very long melting times, where assumption (i) becomes invalid. 
Determination of the M.F.C. must be done using a steady-state 
representation, in which environmental effects are very important. 
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SOLUTION METHOD The Joulean heat generated within the element 

subvolume is determined by computing the current density distribution 
by numerical solution of the electric field problem(^). The heat 

lost to the filler surrounding each subvolume is given by Fourier's 
Law(5) as: 

= - K, "&T 

by 
y=o 

(1) 

The net heat generated within the subvolumes may then be taken as 
the actual heat generation less the heat lost by conduction to the 

filler. This is 

q 
2 

Ji.J K, 
b T 
Ty As 

v 

y=o 

(2) 

(Watts/unit vol.) 

This approach is valid because the element thickness is very small 

compared with the element width and length. 

The 2-dimensional temperature distribution within the element is then 

governed by (5) 

K 
e bx2 

+ K 
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+ q peCe 

b T 
-yE 

(3) 

Since heat flows in the filler are assumed normal to each subvolume 

surface, they are governed by the one—dimensional equation 

K 
b2T 

f by2 
pfCf 

br 
bt 

(4) 

The Crank-Nicholson method ^is used for the iterative numerical 

solution of (3) for the element temperature distribution. The time 
step At is determined by the element diffusivity and dimensions. 

This permits the use of the much faster explicit (non-iterative) method 
for the solution of (4), since the thermal response of the filler is 

much slower than that of the element. 
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This gives, for the element (k = 1) 

n + 1 n n 

Me < Ti,j-l,l + Ti,j+l,l + Vl.j.l + Ti+l,j,r4Ti,j,l 
2(l+2Me) 

n+1 n+1 n+1 n+1 

+Ti,j-l,l + Ti,j+l,l + Vl,j,l + Ti+l,j,l 

1 J T. . - 
(l+2Mg) 1 ,J’1 

1 

+ K^AsAt 

p C v 
e e 3y 

and for the filler (k > 1) 

n+1 

y=o 

(5) 

T. . . = T. . . + M, T. . . ,+ T. . . , - 2T. . . i,j,k i,J,k f] i,J,k-l i,j,k+l r,J,k .... (6) 

where M 
/C At 

2~ ’ Mf 

X^At 
(Az = Ax) 

Ax Ay 

The surface gradient is obtained by numerical differentiation,(6) using 

n 

~ 1Wl?t,2 *   (7) 
"öy 6 Ay 

y=o 

The solution proceeds in successive time-steps as follows. The element 

temperature distribution is found by iterative solution of (5). This 
gives the boundary values ^ which are then used for the solution 

for the filler temperature distribution using (6). (7) then gives the 

gradients for use in (5) at the next time step. 
The algorithm is illustrated by the flow chart shown in Fig.2. 

DISCUSSION The use of the explicit method for the filler minimises 

storage and running time but certain precautions must be taken to avoid 
propagation of large errors (1), which may occur when K^At > 0.5. This 

places a restriction on the lowest value of Ay which can be used. 

(Ay > V 2K^At for stability). However, too large a value of Ay cannot 

be used as the truncation error increases in proportion to Ay^. 
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For quartz filler the thermal diffusivity is very small (typically 
3 x 10~3 cm^ S-1) and this permits very small values of filler nodal 
spacing (Ay min 0.07 At). Instability is avoided in practice by 
using M = 0.166 to determine Ay. This value gives minimum truncation 
error for simple problems (7). 

The time step At must be determined by successive test runs of the 
program using progressively smaller values of At. The computer program 
is general in that fuses are simply specified by the input data. The 
melting time is calculated as a function of several prospective currents 
which are multiples of the M.F.C. Where the M.F.C. is unknown, suitable 
prospective currents are determined by scaling short-circuit values 
obtained from the action integral (8). Individual I: tm solutions are 
terminated when any element subvolume exceeds melting temperature. 
The prearcing time is then accurately determined by linear interpolation 
between the latest and the previous maximum temperature values. 

RESULTS A range of single notched silver strip elements centrally 
positioned in quartz-filled ceramic cartridges was used, and the 
time-current characteristics were determined experimentally and also 
by using the program. The elements varied in width, length, thickness, 
shoulder:neck ratio, and body size, but the same filler was used 
throughout. 

The dimensions of each fuse are given in Fig.3, and the time-current 
characteristics are shown in Fig.4. 

Fig.4 shows that the decoupled method gives very good agreement with the 
experimental curves, up to 2s for notched elements with large 
shoulder:neck ratios (typically 10:1) and up to 10s for elements with 
smaller shoulder:neck ratios (of the order of 5:1). 

Typical computer running times and storage requirements are shown 
below. 

The data shown refers to the prediction of the complete characteristic 
of each fuse using a moderately slow business machine (ICL 1901 A). 

Fuse type Running time Storage 
(At = 0.04s) (words) 

1 5h < 10k 
2 8h < 10k 
3 26h < 8k 

For a modern fast computer the running times will be reduced by 
a factor of about 200. 



PHYSICAL DATA 

The 
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C 

electrothermal data which was used is given below. 

4.2 

m 

5.86 x 10 

0.00445 

0.232 

10.49 

1.176 

1.8 

6.11 x 10£ 

960.8 
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17 —1 Wcm o C 

77 — 1 1 Wem oC 

V1 
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-3 
g-cm 

-1 -1 
W-s-g oC 

g-cm 
-3 

S-cm 

o 

-1 

22.0 

CONCLUSIONS The decoupled method gives accurate predictions 

of time-current characteristics without excessive computer time 

and storage. 

The accuracy of predictions was found to be highly dependent upon 

the choice of time step used. Experience is necessary to determine 

the maximum economical value, which does not affect the accuracy of 

the results. 

The accuracy of the computed filler heat losses was difficult to assess, 

but since axial and lateral heat flow in the filler, the influence of 
the cartridge, and environmental effects are neglected, it must be 
expected that the computed losses are only approximate for long melting 

times. The decoupled model will not give accurate results beyond 10s 
unless an alternative method of computing the losses to the filler is 
used, based upon quasi-steady state solutions. 
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