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Summary 

The vacuum fuses, in contrast to conventional quartz filled fuses, have an outstanding 
certain operation in the range of low currents and excellent arc quenching capabilities [1], In the 
paper, the steady state nonlinear equation for heat transfer in the fuse is solved, considering the 
radiation losses and the conductive heat transfer to the butt electrodes. This makes possible to 
evaluate the influence of the length and the cross-section of the fuse wire on the minimal 
operating current. In the case of negligible radiation losses the time-current characteristics are 
determined by solving the linear heat transfer equation using the Laplace transform and the 
numerical calculation of Mellin- Fourier integral. The results are compared with experimental 
data. 

1. Introduction 

Considering only the radiation losses and controlled current, the heat transfer equation for 
thin cylindrical fuse wire is 

3T_ l 3*T 2c,e(T4-^) | PoO+ote+ße*) c=5.67.10-8 
9t cy9x2 cyr cy ’ 1 (1) 

where £ is the wire radiation constant, c - the wire specific heat, y - the wire density, r - the wire 
section radius, T = 273 + 0 is the absolute temperature of the wire at distance x from center, T0 - 

the ambient temperature, p0= p0 f- - the specific Joule loss at 0 °C . 
The thermal conductivity is decreasing and specific heat is increasing with the temperature 

and near the melting temperature 0n they are 
?i=Io(l-ax0n); cy = (cy)o(l+ac0n) (2) 

where the values at 0 °C are indexed with 0 and given in appendix. 
We will choose the linear temperature variation of the resistivity, which gives a good 

approximation near melting temperature, considering 

P- «RPOT ocR - 
_ l+oc0n + ß02 

In this case the heat transfer equation becomes 

(3) 

9T_ X 92T 2 ct £ (T
4 — TQ ) | aR p0 T 

9t cy 9x2 cyr cy 

In adiabatic case A, = £ = 0 and the constant K is 

(4) 
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K= f j2 dt = [(1- 273ac) h +ac (T„ - Tb)] (5) 
0 (*RPo Tb 

More accurate the values of K can be determined, considering the given in [3] parabolic variation 

with the temperature of the parameters c, y and p. For T0 = 293 K they are: 6.41 • 1016 A2s/ m4 

for silver and 8.83-1016 for copper, that rather agree with the given in [4] values (5.91 and 
respectively 8.63) then from [5] (7.02 and 9.33). 

For short pre-arcing times (near adiabatic regime) better approximations are obtained for 
smaller, equivalent value of aR , for which the relation (5) gives the true values of K Thus, for 
Ag and Cu aR must be considered: 

aR for short pre-arcing time aR for long pre-arcing time 

Silver 40.1-10" 44.0-10 -4 

Copper 38,6-10" 45.9-10 -4 

2. Negligible Radiation Losses (e = 0) 

In this case the heat transfer equation becomes linear one and denoting by T(s, x) the 
Laplace time-transform of the absolute temperature T(t, x) and by T0(x) the initial absolute 
temperature of wire, we obtain the equation 

92T 
+ v2T = -^Tb(x) (6) 

I 
where j = —— is the current density and 

nr 

fePO =j fepo 
S0 = J 

■2 (*R Po 
cy 

(7) 

For constant current I and linear dependence of initial temperature T0(x) = T] + (X-1I)T2 

, the solution of the equation (6) looks like this 

T(s, x) = A cos(vx)— ~~2 TQ(X) 
= A cos(vx) + (8) 

lv^ S-SQ 

Considering the initial temperature uniform (T2 = 0) and the temperature of the butt 
electrode (for x = lj) constant and equal to T j, the Laplace image of the temperature, at distance 
x from the center of the fuse wire, will be 

S-SQ S cos(vl1) 
n s, o)= Tl [1 

So 
S-So s-cos(vl1) 

] (9) 

The temperature in the center of the fuse wire is the original of this expression that can be 
obtained by numerical computation of the Mellin-Fourier integral [2] 
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£+J°° st 

T(,'0)=^T' [ i^[1- 
e-jo° u 

SO 

So scos(vl1) 
] ds (10) 

The time-current density characteristics for silver are given in fig. 1 for different wire 
length. The adiabatic case corresponds to L—> °°. 
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2.1. The steady-state temperature distribution 

The Laplace transform of the temperature in x (9) may be represented like this 

The original of the second term of (9') is [6] 

(9*) 

exp f(t)=2jtT] eSot £ ('1)n 

n=0(n + 0.5)n 

For enough small current densities (j < jcr, see below) when 

Jt 

(n + 0.5)2Tt2X, 

cyl2 

(ffl l1)<jr/2 ** SQ < 
-2 X 

lim f(t) = 0 
t—>oo 

(11) 

(12) 
4 cylf 

So, the steady-state temperature may be obtained as the limit of the first term of (9') for 
s —> 0, when v —> m 

T(x)= lim s-r(s, x)= T] [ C0S(Q)*) j. ml] (13) 
t~>0° s cos(ml]) 
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If the butt electrode temperature is maintained at 8%, the rated current of the fuse may be 
determined from (13) and (7) considering that the melting temperature is reached in the center of 
the wire: T(0) = 273 + 0n , i. e. from the condition: 

Tn = 273+6„ = (273 + 9|)- 1 - (14) 
COS(©li) 

Considering the expression (7) for ffi, we obtain for rated current and current density 

Io - Co —; C0 - — I——— arccos-*-; L-j0-C]-—C0 (15) 
L 2 ]] aR p0 Tn n 

where d = 2 r and L = 2 lj are the diameter and the length of the wire. 
For colj = n /2 the steady-state wire temperature becomes infinite. This defines the 

critical current density jcr , that is the greatest current density at which the Joule loss can be 
completely evacuated by wire conductivity and consequently the wire steady-state temperature 
has a finite value: 

I_=- 
aR Po 

LjCT=it = C„ 
I OCR Po 

(16) 

For 0i = 20°C and dimension in mm the constants CQ, C% and Ccr are the following: 

£SL ci 'SL. 
Silver A/mm 4018 5116 6037 
Copper A/mm 4535 5548 6629 

2.2. Two sections fuse wire 

For two cross-sections fuse wire (Ai and A2) or in the case of cylindrical butt electrodes 
in vacuum, denoting by 1 all the parameters of central part and by 2 of the marginal parts, the 
steady-state solution, satisfying the boundary conditions 

x = 0 => T,(0) = Tm; S-|x=0 = 0 (17) 
dx 

x = *l =* Tl(ll) = T2(ll); q = -^i AJ-^-|X=1J = -A.2 A2-^-|X=1J (18) 

will be: 
Tl(x) = TmCOs(m,x) (19) 

T2(x) = Tm[C0S(ml1l) C0S(C02(x-1l))-f sin(cül1l) sin((Ö2(x-l1))] (20) 
where 

&M = j i = u (21) 

^2^2 A] y aR2P02 ^02 V ^i V ^i 

For x = lj + I2 we obtain the butt electrode temperature 

T2(1J +12) = Tm[cos(cD1 lj)• cos(m2l2)-f sin(mili) sin(m2l2)] (22) 
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3. Influence of Radiation Losses on Steady-State Temperature Distribution 

3 T 
Considering —— = 0 in (4) we obtain the steady-state equation 

o t 

d2T 

dx 
~2=a (T 

—
 TQ )—CD T; a = 

_ 2cj e 
X r 

[l/mz] (23) 

dT 
Multiplying the equation by and integrating, the following solution, satisfying the 

d x 
initial conditions (17), is obtained 

dT 

dx = -\/“2(Tm-T2) + 2a[1o(Tn|-T)-0-2(Tm-T5)] (24) 

A second integration give us the steady-state temperature distribution along of central part 
of fuse wire 

1 
x(T)= f 

T/T_ 

d z 

V 

(25) 

m2(l-z2) + 2a[-P-(l-z)-0.2T0
3(l-z5)] 

lm 
The integral may be calculated with the 32-point Gauss quadrature subroutine DQG-32 in 
FORTRAN. 

For a very long wire, when L —> the wire temperature may be considered constant 

(— = 0) and the equation (23) becomes 
dx 

a(T4-T4) = m2T 

In this case the limit current is 

loo — C„d 
3/2 . 

rp4 rp4 
qe Tn-T0 

(26) 

(27) 
2 V aR Po Tn 

For TQ = 293 °C => Coo = 2.847-10^ A/m*for silver and 1.948-10^ for copper. 
Considering the both thermal flux, the limit current of fuse may be approximated by 

I„ = Jlo + I2 <28> 
The dependence of the limit current In versus the silver wire length for different wire 

diameters is given in fig. 2. 

4. Comparison with Experimental Data 

The limit current for L = 20 mm measured in [1] for silver wire with diameter d = 0.35 
mm is 18 A and calculated with (28) is 24.6 A. For d = 0.40 mm the values are respectively 36 A 
(measured) and 32.2 A (calculated). The differences may be explained by the different thermal 
contacts between fuse wire and the butt electrodes and by statistical deviations. 
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APPENDIX 

Silver and copper wire parameters in SI units for 0 °C [3] 

Y • l(r “x •id* Po 10» a-10 ß-108 0 n cu 10" 

235 10.56 418 4.46 1.47 40.3 60 961 0.02 1.54 
Cu 386 8.89 388 1.80 1.62 43.3 45.3 1083 0.81 1.20 

The specific heat for silver is: c= CQ(1 + 2.13-10 40). The specific heat for copper up to 500 °C 

is c= c0(l +1.7 - 1O“40 +60 - 1O802) 

and c=c5oo[l+1.81O~4(0-5OO)] for 0e(500, 1000). 

The coefficients of linear expansion are: 

a, = 19.5 • 10~6 +1.45 • 10-9 0 + 2.25 • 10~12 02 for Ag 

a, = 16.7-10-6 + 3.8-1O_90+1.5 -1O-1202 for Cu. 
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