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Abstract: Results of numerical calculations of fuse-element heating in transient and steady-state, performed in 

FLUX 2D software. The calculations take into account the heating of the whole fuse-element. Temperature in 

the fuse-element was chosen for analysis. Following the examinations performed, it was noted that during 

calculation of  pre-arcing parameters, it is necessary to take heat conduction in the fuse-element into 

consideration, as well as the variable (as a function of temperature). In steady-state, the current density boundary 

value was determined, above which the fuse-element temperature begins to rise rapidly. Assumptions for the 

model and results of numerical calculations are given.  
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1. Introduction 
 

Heating of fuse-elements has been well examined 

by experimental methods [2]. However, 

experimentally, it is difficult to determine the 

temperature values and distribution inside the fuse. 

This difficulty can easily be overcome using  

a simulation method, which provides the information 

we want in a very short time [1,4]. However, the 

simulation method is not perfect. The main 

disadvantage of simulation methods are difficulties in 

determining the material, electrical and thermal 

properties, and especially their relation to 

temperature. The purpose of the paper is to check 

what errors are made during calculations of some of 

the fuse parameters using simplified relations given 

in literature, eg. [2]. In the paper, a simulation 

method was chosen for examination of fuse heating 

in transient and steady-state. Since this subject matter 

is very broad, the scope of research in this paper has 

been narrowed down to examining the distribution of 

temperature in the fuse-element. The scope of 

research includes also the determination of the effect 

of various simplifications, used mainly in analytical 

calculations to obtain a distribution of temperatures 

and to determine the effect of the shape and number 

of fuse-element constrictions on the heating process 

in transient and steady-state. Calculations were 

performed in FLUX 2D software [5]. The FLUX 2D 

package allows for analysis of coupled 

electromagnetic and thermal fields in transient. 

Steady-state were examined in such a way that the 

transient was analysed until the distributions of both 

fields became steady. The 2D package, used to 

examine fuse, allows for examination of axially 

symmetrical shaped fuse. Calculations in FLUX 

software are made in the finite element method in 

space and the method of finite differences as 

a function of time [5]. 

 

2. The model of the fuse-element and fuse  
 

The source of heat in a fuse-element is Joule heat 

produced in the fuse-element. The fuse assumed for 

analysis (Fig. 1a) is axially symmetrical. Within the 

accepted symmetry, fuse-elements were assumed to 

have the shape of a wire (Fig. 1b) and of a cylindrical 

tube (Fig. 1c). Both fuse-element shapes had the 

same cross section area in the non-constricted part. 

Tubular fuse-elements, though rarely used in 

fuses [2], allow to model the amount of heat given up 

from the fuse-element surface to the surroundings, by 

changing the tube diameter. Tube-shaped fuse-

elements are equivalent to fuse-elements in the form 

of metal foil of various thicknesses and widths - but 

with the same cross-section area. The assumed 

constrictions in fuse-elements with two different 

shapes and various dimensions (Fig. 2) model 

various amounts of heat given off and taken away 

along the fuse-element.  

Various simplifications of the model, consisting 

in consideration or neglection of heat exchange 

between various areas of the fuse, can be introduced 

through appropriate boundary conditions or by 

assigning appropriate values to thermal conduction 

coefficients λk for the k-th area of the fuse [3]. In 

transient, the following boundary conditions were 

modelled in this way: 

a) no heat is carried off - adiabatic heating  

(λ1 = λ2 = 0), 

b) heat is carried off along the fuse-element to the 

contacts (λ2 = 0), 



c) heat is carried off to the contacts and to the 

surroundings. 
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Fig. 1. Fuse assumed for analysis 

a) fuse cross section, b) wire fuse-element (cross-

section area - 0.75 mm2), c) tubular fuse-element 

(cross-section area - 0.75 mm2) 

1 – fuse-element, 2 – sand, 3 – isolation tube,  

Bo – current feed surface 
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Fig. 2. The examined shapes of constrictions in a 

wire-shaped fuse-element 

a) rectangular, b) triangular 

denotation of a rectangular constriction: 

„r-0.2” for a=0.2d and „r-1” for a=d 

denotation of a triangular constriction: 

„t-0.2” for a=0.2d and „t-1” for a=d 

In steady-state, we can, of course, consider only 

variant b) or c). Heat transfer from the fuse-element 

takes place through thermal conduction, while from 

the fuse casing to the surrounding air – by convection 

[3], according to the formula 

)TT(q op3ck −α=  (1) 

where: αc – coefficient of heat loss, T3p – temperature 

of the fuse surface, To – temperature of the 

surroundings.  

Giving up heat from the contacts was modelled in 

such a way that a constant temperature was assumed 

at part of the contact area – marked in Fig. 1 by the 

symbol Bo. In both transient and steady-state, heating 

was examined until the moment when the maximum 

temperature in the fuse-element reached melting 

point. During heating to a higher temperature, fuse-

element disintegration may take place and then the 

manner of its heating will change [1]. 

 

2. Fuse-element heating in transient  
 

2.1. The model of fuse-element heating 

 

In order to examine the fuse-element heating 

process in transient, it was assumed that current 

densitiy at the ends of the fuse-element is 

homogeneous, and increases in a linear manner as a 

function of time, in accordance with the formula  

Atj =  (2) 

where: A – rise steepness of current density increase, 

t – time. 

An approximately linear character of current 

escalation, especially during the initial phase, occurs 

most frequently in short-circuit currents and is 

convenient for comparison of fuse-element heating in 

various conditions. For fuse-element cross-section 

dimensions occurring in practice, we can neglect the 

skin effect in calculations of the current density 

distribution in the fuse-element (the depth of 

penetration of the electromagnetic field is greater 

than the cross-section dimensions of the fuse-

element) and assume that at any moment, the 

quasistatic distribution of potential ϕ(t) in the fuse-

element is described by the formula [1]  

0)( =ϕ∇σ⋅∇ ,       ϕ∇σ=j   (3) 

where: j – the vector of current density,  

σ = σ(r,z,T) – conductivity dependent on co-

ordinates and temperature in accordance with the 

formula  

]T)t,z,r(T[1
)T,z,r(

o

o

−α+
σ

=σ   (4) 

Distribution of temperature in the fuse-element is 

described by the equation of thermal conductivity 



σ
+∇λ=

∂
∂

ρ
2

2
p

j
T

t

T
c  (5) 

where: ρ - density of the medium, cp – specific heat, 

λ – thermal conductivity, j – module of current 

density.  

In the remaining areas of the fuse, the tempera-

ture distribution is described by the formulae (5), 

which omit the last component (there is no heat 

source). If in formula (5) we omit the second 

component on the right, the heating will have an 

adiabatic character. Distributions of temperature in 

particular areas of the fuse are connected by 

appropriate boundary conditions. For current density, 

a homogeneous distribution at the ends of the fuse-

element was assumed as a boundary condition, 

described by relation (2). In particular areas of the 

fuse-element, the assumed material data and 

coefficients [1] are given in table 1. 

Table 1. Material data and coefficients 

Designation of material – Fig. 1 
Parameter 

1 2 3 4 

λ, W/(m⋅K) 396 1,2 1 396 

cp, J/(kg⋅K) 386 80 800 386 

ρ, kg/m3 8930 1500 2400 8930 

αc, W/(m2⋅K) - - 10 - 

σ0, S/m 5,98⋅107 - - 5,98⋅107 

α, 1/K 0,0039 - - 0,0039 

 

2.2. Calculation results  

In the process of fuse-element heating in 

transient,  an important parameter is time until 

melting point (Tm). In order to determine the effect of 

various factors on fuse-element heating, the results 

obtained were compared with the results obtained for 

adiabatic heating. The results were compared for 

identical values of parameter A (2) at point C of the 

fuse-element constriction (Fig.2). Calculations were 

performed for parameters of the fuse-element given 

in table 1.  

Fig. 3 presents an example of temperature 

distribution at the instant when Tmax=Tm in the area 

of fuse-element constriction r-0.2 (Fig. 2) for various 

values of parameter A and various conditions of heat 

transfer from the fuse-element.  
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Fig. 3. Temperature distribution in the fuse-element 

in the constriction area r-0.2 for A=10 kA/(mm2⋅ms) 

(a,b,c) and A=1000 kA/(mm2⋅ms) (d,e,f) during 

adiabatic heating (a,d) heat being carried off along 

the fuse-element (b,e), and heat being carried off 

along the fuse-element and into the surroundings (c,f)  

Fig. 4÷7 present results of simulation of 

temperature, time until melting point (Tm) and pre-

arcing Joule integral (I2tp) as a function of various 

parameters of the fuse-element and parameter A (2). 
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Fig. 4a. Trace of temperature at point C as a function 

of time, constriction 1:5, shape r-0.2,  

A=10 kA/(mm2⋅ms) 

1 – adiabatic heating, 2 – heat carried off only to the 

contacts, 3 – heat carried off to contacts and to 

surroundings  
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Fig. 4b. Trace of temperature at point C as a function 

of time, constriction 1:5, shape r-0.2, 

A=1000 kA/(mm2⋅ms); 

1 – adiabatic heating, 2 – heat carried off only to the 

contacts, 3 – heat carried off to contacts and to 

surroundings  
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b) 

Fig. 5. Trace of temperature at point C as a function 

of time for constriction 1:5, shape r-0.2:  

a) A=10 kA/(mm2⋅ms),  b) A=1000 kA/(mm2⋅ms) 

1 – σ=σ(r,z,T)=var,  2 – σ=σo=const. 
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Fig. 6. Trace of temperature at point C as a function 

of time for: constriction 1:5, A=10 kA/(mm2⋅ms) 

1 – adiabatic heating – r-0.2, 2 – heat carried off only 

to the contacts – r-0.2, 3 – heat carried off to contacts 

and to surroundings – r-0.2, 4 – adiabatic  

heating – t-0.2, 5 – heat carried off only to the 

contacts – t-0.2, 6 – heat carried off to contacts and to 

surroundings – t-0.2 

Heating of the fuse-element constriction (Fig. 4) 

depends largely on the value of parameter A and on 

the conditions of heat transfer from the fuse-element. 

In transient, heat transfer to sand, compared with heat 

transfer along the fuse-element, is practically 

insignificant. As could be expected, the effect heat 

transfer along the fuse-element is the greater, the 

smaller the value of A is.  

Accounting for variable conductivity as a 

function of temperature (Fig. 5) has a serious effect 

on fuse-element heating calculations. Assumption of 

constant conductivity, independently of the value of 

parameter A, causes considerable extension of time 

until melting point, and so, an increase of I2tp. 

During calculations of fuse-element heating tor an 

element with several constrictions (in transient), for 

various parameters, mutual interaction between 

constrictions in the heating process was not noted. 

The effect of constriction shape on its heating is 

shown in Fig. 6. This effect is not significant and 

plays a more important role during adiabatic heating. 

The constriction length influences the amount of heat 

given off in the constriction, while the shape effects 

the current density in the constriction. In Fig. 6 the 

different traces result from different current density 

distribution in both cases. As the value of parameter 

A grows, the differences between the traces decrease. 

Comparative, relative results of temperature 

calculation, time until melting point Tm and I2tp as a 

function of parameter A for various conditions are 

presented in Fig. 7. All the calculated magnitudes are 

related to the same magnitudes calculated for 

adiabatic heating. Variable conductivity as a function 

of temperature has been taken into account.  

It ensues from Fig. 7a, that at small values of A, 

time until Tm is considerably longer when heat is 

carried   away   from  the  fuse-element,  than  during  



1 10 100 1000 10000

parameter A, kA⋅ms-1⋅mm-2

100

150

200

250
r

e
la

ti
v

it
y

 t
im

e
, 

p
e

r
c

e
n

t
1

2

3 4

5

6

7

8

 

a) 

1 10 100 1000 10000

parameter A, kA⋅ms-1⋅mm-2
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b) 
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c) 

Fig. 7. Dependencies between relative values: time 

until Tm at point C - a) temperatures at point C 

at the instant of reaching Tm during adiabatic 

heating - b) and I2tp - c) when heat is carried off 

to the contacts and to the surroundings, related 

to the same magnitudes during adiabatic 

heating, and parameter A  

1 – constriction 1:5, shape r-0.2; 2 – constriction 1:5, 

shape t-0.2; 3 – constriction 1:5, shape r-1;  

4 – constriction 1:5, shape t-1; 5 – constriction 1:2, 

shape r-0.2; 6 – constriction 1:2, shape t-0.2;  

7 – constriction 1:2, shape r-1; 8 – constriction 1:2, 

shape t-1 

adiabatic heating (for A=10 kA/(mm2⋅ms) relative 

time is from 105 to 210%). Relative time is greater 

for larger fuse-element constrictions and for 

triangular constriction shape, which results from a 

nonhomogeneous current density distribution. For 

values of parameter A > 1000 kA/(mm2⋅ms) we can 

assume that heating until Tm is practically adiabatic.  

The relations presented in Fig. 7b indicate what 

relative temperature (relative to Tm) is reached at 

point C at the instant when Tm is achieved during 

adiabatic heating. The lowest temperature occurs at 

point C, at low value of A, large constriction (1:5) 

and with a triangular shape of the constriction, while 

the highest temperature occurs for high value of A, 

small constriction - 1:2 and rectangular shape of the 

constriction. Such dependencies of relative 

temperature result mainly from the conditions in 

which heat is carried off, and from current density 

distribution in the constriction. At small values of 

parameter A, especially in a large constriction of 

little length, a large amount of heat has enough time 

to be carried off from the constriction into the 

surroundings. For greater values of A, the amount of 

heat carried off into the surroundings is smaller. With 

a triangular constriction, the current density 

distribution is more nonhomogeneous in the 

constriction area and this is why the temperature at 

point C is lower than in the case of a rectangular 

constriction.  

The dependency between relative value I2tp and 

parameter A is similar to the dependency between 

relative temperatures (Fig. 7c). The values of I2tp 

have been related to I2tp during adiabatic heating 

calculated to the moment when Tm is reached at point 

C. Qualitatively, these dependencies are almost 

identical, but they differ quantitatively. Quantitative 

differences result from the fact that, at a given value 

of A, the relative temperature depends both on 

duration of heating and on changes of conductivity 

(4) during this time, while the Joule’a integral 

depends only on the duration of heating. Therefore, 

relative values of I2tp are greater than the relative 

values of temperature in the same conditions.  

It ensues from the traces shown in Fig. 7 that 

calculations of pre-arcing time, pre-arcing Joule 

integral and temperature distribution in the fuse-

element in transient state should be performed, taking 

into account the process of heat transfer from the 

fuse-element and variable conductivity [3]. 

Calculations made using simplified relations lead to 

considerable errors, especially for small values of 

parameter A.  

 

3. Heating of the fuse-element in steady-

state 

3.1. The model of fuse-element heating 

The fuse-element heating process in steady-state 

is described by formula (5), in which the component 



on the left equals zero. However, due to the fact that, 

the Steady thermal module of the FLUX software 

package lacks the possibility to account for the 

dependence between conductivity and temperature 

[5], steady-state in the fuse-element was analysed in 

such a way, that calculations were performed for the 

transient until temperature distributions in the fuse-

element steadied. It was assumed that current density 

at the ends of the fuse-element is homogeneous and 

has an exponential trace, in accordance with the 

formula 

)]
T

t
exp(1[Jj

o
o −−=  (6) 

Current density Jo (6) may express direct current 

density, as well as the effective value of a current 

changing periodically as a function of time. In the 

second case, the current change period should be 

considerably shorter than the time constant To. With 

this assumption, for alternating current, temperature 

changes connected with current change period are not 

accounted for. 

3.2. Calculation results  

In the process of fuse-element heating in steady-

state, temperature distribution depends on many 

parameters. In the paper, the effect of current density 

Jo (6), fuse-element dimensions and the degree and 

number of constrictions on temperature distribution 

in the fuse-element was examined. The effect of the 

constriction shape was not examined. The effect of 

the number of constrictions on temperature was 

investigated. In steady-state, a very important role is 

played by the manner in which heat is carried off 

from the fuse-element. It was assumed that heat 

transfer from the fuse-element takes place through 

convection – from the surface (excluding the contact 

faces from which heat is carries away by means of 

thermal conductivity) Bo (Fig. 1). The effect of 

various parameters of heat transfer from the fuse on 

the temperature distribution in the fuse-element was 

not examined. 

Selected results of calculations of the temperature 

in the constriction located in the mid-length of the 

element are presented in Fig. 8÷11. 

It results from Fig. 9÷11 that for a given fuse-

element, there exists a certain boundary current 

density value, above which the temperature of the 

constrictions, and therefore the temperature of the 

entire fuse-element, begins to increase rapidly. 

Jog≈100 A/mm2 can be assumed as the current density 

boundary value for the given fuse-element. The value 

of Jog allows us to determine eg. sustained boundary 

current for a given fuse [2]. 

From Fig. 9, it ensues that failing to account for 

variable conductivity in calculations leads to large 

errors, especially for current densities Jo>Jog. 
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Fig. 8. Distribution of temperature in the fuse in 

steady-state for Jo=100 A/mm2 (wire element, 

n=3, constriction 1:5)  
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Fig. 9. The relation between temperature in the fuse-

element constriction 1:5 as a function of 

current density Jo for n=1 and: 

σ=σ(r,z,T)=var: 1 – wire fuse-element, 2 – tubular 

fuse-element with 0.2 mm thickness, 3 – tubular 

fuse-element with 0.1 mm thickness; 

σ=σo=const.: 4 – wire fuse-element, 5 – tubular fuse-

element with 0.2 mm thickness, 6 – tubular fuse-

element with 0.1 mm thickness 

If the condition Jo>Jog is met in a given fuse, heat 

transfer from the fuse-element to the sand medium 

plays an important role (Fig. 10 and 11). The 

temperature of the fuse-element with a larger surface 

area (tubular element) builds up more rapidly than in 

a fuse-element with a small surface area (wire- 

element).  
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Fig. 10. The relation between temperature in the 1:5 

constriction as a function of current density Jo 

for: n=3 and σ=σ(r,z,T)=var 

1 – wire element, 2 – tubular fuse-element with  

0.2 mm thickness, 3 – tubular fuse-element  

with 0.1 mm thickness 
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Fig. 11. Relation between temperature in the fuse-

element constriction 1:5, as a function of 

current density Jo for: n=5 and σ=σ(r,z,T)=var 

1 – wire element, 2 – tubular fuse-element with  

0.2 mm thickness, 3 – tubular fuse-element  

with 0.1 mm thickness 

If the Jo>Jog is met, the number of constrictions in 

the fuse (Fig. 9 ÷ 11), has a significant effect on the 

temperature in the constrictions.  

The time necessary to achieve steady-state of 

temperature in the examined fuse-element can be 

assumed as equal to 10 minutes. 

 

4. Summary and conclusions 
 

The following conclusions result from the 

considerations and calculations performed:  

 

 

 

 

 

 

 

a) regarding fuse-element heating in transient: 

• calculations should take into account the variable 

conductivity of the fuse-element as a function of 

temperature. Otherwise, serious errors are made; 

• at low current densities, heat transfer from the 

constrictions to the unconstricted parts of the fuse-

element should be taken into account; 

• the degree of constriction plays a significant role; 

• the shape of the constriction plays a small role 

resulting from nonhomogeneous distribution of 

current density in the constriction. Greater 

nonhomogeneity occurs in short constrictions; 

• transfer of heat from the fuse-element to the 

surrounding sand does not play a significant role.  

b) regarding fuse-element heating in steady-state: 

• there exists a boundary value for current density in 

the fuse-element, above which its temperature will 

begin to rise rapidly; 

• calculations should account for variable 

conductivity as a function of temperature. 

Otherwise, serious errors can be made;  

• the temperature of the fuse-element, especially at 

current densities greater than the boundary density, 

is affected by the number of constrictions.  
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